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OVERVIEW

▪ What is recursion?
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Nested Russian 

Matryoshka dolls

Defining a problem 

in terms of itself



OVERVIEW

▪ Recursive artwork: picture appears inside picture
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OVERVIEW

▪ Recursive fractals:  self similar patterns
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OVERVIEW

▪ Recursive jokes: refer to themselves
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OVERVIEW

▪ In computer science, recursion is a method of solving a 
computational problem where the solution depends on 
solutions to smaller instances of the same problem – Knuth

▪ Recursion is very old:

▪ Factorial – India 300BC

▪ Greatest common divisor – Greece 300BC

▪ Fibonacci – India 200BC

▪ Recursion is very powerful:

▪ Binary Search

▪ Towers of Hanoi

▪ N-Queens
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OVERVIEW

▪ In this section we will discuss a variety of classic recursive 

algorithms for solving computer science problems

▪ Explain the recursive algorithms

▪ Discuss their implementation

▪ Use box method to trace execution

▪ We will calculate and compare the speeds of algorithms

▪ Some are logarithmic – O(logN)

▪ Some are linear – O(N)

▪ Some are exponential – O(2N)
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FACTORIAL

▪ Intuitive definition of N factorial

▪ The product of all integers from 1 to N

▪ N ! = N * (N-1) * (N-2) * … 3 * 2 * 1

▪ Recursive definition of N factorial

▪ N ! = N * (N-1) !

▪ 1 ! = 1

▪ 0 ! = 1

▪ We can turn this into code very easily
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Two terminating conditions

Recurrence relationship



FACTORIAL

int factorial(int num)

{

// Handle terminating condition

if (num <= 1)

return 1;

// Handle recursive case

else

return (num * factorial(num – 1));

}
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Calling factorial function with 

smaller parameter value



FACTORIAL

int factorial(int num)

{

// Handle terminating condition

int result = 1;

// Handle recursive case

if (num > 1)

result = num * factorial(num – 1);

return result;

}
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Calling factorial function with 

smaller parameter value



FACTORIAL

▪ We can use the box method to trace the execution of the 

factorial function

▪ Goal is to draw a diagram to visualize execution

▪ Draw a box representing each function call

▪ Show parameters at top of box

▪ Use arrows to show each recursive call

▪ Use arrows to show return values
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FACTORIAL

▪ What happens when we call fact(3) in main program?

CSCE 2014 - Programming Foundations II 13

main fact(3)

We leave main program and 

execute fact(3)



FACTORIAL

▪ What happens when we call fact(3) in main program?
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main fact(3) fact(2)

We execute function with 

num=3 and call fact(2)



FACTORIAL

▪ What happens when we call fact(3) in main program?
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main fact(3) fact(2) fact(1)

We execute function with 

num=2 and call fact(1)



FACTORIAL

▪ What happens when we call fact(3) in main program?
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main fact(3) fact(2) fact(1)

1

We reach terminating 

condition and return 1



FACTORIAL

▪ What happens when we call fact(3) in main program?

CSCE 2014 - Programming Foundations II 17

main fact(3) fact(2) fact(1)

12

We calculate and 

return 2*1=2



FACTORIAL

▪ What happens when we call fact(3) in main program?
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main fact(3) fact(2) fact(1)

126

We calculate and 

return 3*2=6



FACTORIAL

▪ What happens when we call fact(3) in main program?
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main fact(3) fact(2) fact(1)

126

Notice that the arrows make a 

continuous closed loop and end 

up back at the main function



FACTORIAL

▪ How calls to factorial are needed to get answer?

▪ calls(1) = 1

▪ calls(2) = 1 + calls(1) = 2

▪ calls(3) = 1 + calls(2) = 3

▪ …

▪ calls(N) = 1 + calls(N-1) = N

▪ This recursive function is linear because it takes O(N) 

calls to calculate the correct answer
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FACTORIAL

int factorial(int num)

{

// Iterative solution

int result = 1;

while (num > 1)

{

result = result * num;

num--;

}

return result;

}
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We can also calculate 

factorial with a loop that 

executes N times

This will be slightly faster 

because there is no function 

call overhead



FACTORIAL

▪ Conclusions:

▪ The factorial function can be described recursively using

▪ N ! = N * (N-1) !

▪ 1 ! = 1

▪ 0 ! = 1

▪ Recursive solution takes O(N) steps

▪ Iterative solution also takes O(N) steps
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POWER

▪ Intuitive definition of the power function XP

▪ XP is the product of X times itself P times

▪ Simple to implement when P is an integer
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float power(float X, int P)

{

   int result = 1;

   while (P >= 1)

   {

      result *= X;

      P--;

   }

   return result;

}



POWER

▪ Is there a recursive solution?

▪ Consider power(2,6) = 2*2*2 * 2*2*2 = 64

▪ Notice that we are calculating 2*2*2 two times above

▪ Hence power(2,6) = power(2,3) * power(2,3)

▪ We can generalize this as follows

▪ When P is even: 

▪ power(X,P) = power(X,P/2) * power(X,P/2)

▪ When P is odd: 

▪ power(X,P) = power(X,P/2) * power(X,P/2) * X
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P is an integer, so we 

use integer division 

when we calculate P/2



POWER

▪ When should we stop the recursion?

▪ We have the following terminating conditions:

▪ power(X,1) = X

▪ power(X,0) = 1

▪ Is this recursive solution faster?

▪ Yes, if we save and reuse our calculations of power(X,P/2)
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POWER

float power(float X, int P)

{

// Handle terminating conditions

if (P == 0) return 1;

if (P == 1) return X;

// Handle recursive cases

float temp = power(X,P/2);

if (P % 2 == 0) 

return temp * temp;

if (P % 2 == 1) 

return temp * temp * X;

}
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Calculate and save 

power result for P/2

Reuse this result to handle 

even and odd power cases



POWER

▪ Consider box method trace of power(2,8)
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main p(2,8)

Main calls 

power(2,8)



POWER

▪ Consider box method trace of power(2,8)
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main p(2,8) p(2,4)

power(2,8) calls 

power(2,4)



POWER

▪ Consider box method trace of power(2,8)
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main p(2,8) p(2,4) p(2,2)

power(2,4) calls 

power(2,2)



POWER

▪ Consider box method trace of power(2,8)
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main p(2,8) p(2,4) p(2,2) p(2,1)

power(2,2) calls 

power(2,1)



POWER

▪ Consider box method trace of power(2,8)
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main p(2,8) p(2,4) p(2,2) p(2,1)

2

We reach P=1 terminating 

condition and return X=2



POWER

▪ Consider box method trace of power(2,8)
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main p(2,8) p(2,4) p(2,2)

4

p(2,1)

2

We calculate and 

return 2*2=4



POWER

▪ Consider box method trace of power(2,8)
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main p(2,8) p(2,4) p(2,2)

416

p(2,1)

2

We calculate and 

return 4*4=16



POWER

▪ Consider box method trace of power(2,8)
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main p(2,8) p(2,4) p(2,2)

416256

p(2,1)

2

We calculate and 

return 16*16=256



POWER

▪ Consider box method trace of power(2,8)
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main p(2,8) p(2,4) p(2,2)

416256

p(2,1)

2

• Notice that we only performed 3 multiplies instead of 8 multiplies

• In general, we only need O(log2P) multiplies to calculate XP

• Unfortunately, this technique does not work for float powers



POWER

▪ Conclusions:

▪ The integer power function can be described recursively

▪ power(X,P) = power(X,P/2) * power(X,P/2) for even P

▪ power(X,P) = power(X,P/2) * power(X,P/2) * X for odd P

▪ power(X,1) = X

▪ power(X,0) = 1

▪ Recursive solution is logarithmic and takes O(logN) steps

▪ Naive iterative solution is linear and takes O(N) steps
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FIBONACCI

▪ Fibonacci was a 12th century Italian mathematician who 

popularized the Arabic numeral system in Europe and is 

known for the Fibonacci sequence 1,1,2,3,5,8,13,21,34,55…

▪ Notice that each number in the sequence is equal to the 

sum of the two previous numbers

▪ Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

▪ The terminating conditions for this recursion are:

▪ Fibonacci(1) = 1

▪ Fibonacci(2) = 1
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FIBONACCI

▪ This recursive function calls itself two times each time it is 
executed so the number of recursive calls grows rapidly

int Fibonacci(const int Num)

{

cout << "calling Fibonacci " << Num << endl;

if (Num <= 2)

return(1);

else

return( Fibonacci(Num-1) + Fibonacci(Num-2) );

}
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FIBONACCI

▪ Consider box method trace of Fib(3)

▪ First, we call Fib(2)

▪ Then, we return to Fib(3)

▪ Then, we call Fib(1)

41

main Fib(3)

Fib(2)

Fib(1)
1

1

2
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FIBONACCI

▪ Program output for Fib(3)

calling Fibonacci 3                                                                                                          

calling Fibonacci 2                                                                                                          

calling Fibonacci 1                                                                                                          

42

There are 2 Recursive 

calls from Fibonacci(3)
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FIBONACCI

▪ Consider box method trace of Fib(4)

▪ First, we call Fib(3) as above

▪ Then, we return to Fib(4)

▪ Then, we call Fib(2)

43

main Fib(4)

Fib(3)

Fib(2)

Fib(2)

Fib(1)1

12

1

3
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FIBONACCI

▪ Program output for Fib(4)

calling Fibonacci 4                                                                                                          

calling Fibonacci 3                                                                                                          

calling Fibonacci 2                                                                                                          

calling Fibonacci 1                                                                                                          

calling Fibonacci 2                                                                                                          

44

First, we calculate 

Fibonacci(3)

Then, we calculate 

Fibonacci(2)
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FIBONACCI

▪ Consider box method trace of Fib(5)

▪ First, we call Fib(4) as above

▪ Then, we return to Fib(5)

▪ Then, we call Fib(3) as above

45

main Fib(5)

Fib(4)

Fib(3)
3

2

5

Same as 

above

Fib(4)

Fib(3)

Fib(2)

Fib(2)

Fib(1)1

12

1
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FIBONACCI

▪ Program output for Fib(5)

calling Fibonacci 5                                                                                                          

calling Fibonacci 4                                                                                                          

calling Fibonacci 3                                                                                                          

calling Fibonacci 2                                                                                                          

calling Fibonacci 1                                                                                                          

calling Fibonacci 2                                                                                                          

calling Fibonacci 3                                                                                                          

calling Fibonacci 2                                                                                                          

calling Fibonacci 1

46

First, we calculate 

Fibonacci(4)

Then, we calculate 

Fibonacci(3)
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FIBONACCI

▪ How can we calculate the number of recursive function 

calls needed to calculate the Nth Fibonacci number?

▪ Recursive definition:

▪ calls(N) = calls(N-1) + calls(N-2) + 1

▪ calls(1) = 1

▪ calls(2) = 1

▪ The number of calls is 1,1,3,5,9,15,25,41,67,109…

▪ This is an example of exponential growth O(2N)

▪ As N increases calls(N) → 2 * Fibonacci(N)
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FIBONACCI

int Fibonacci2(const int Num)

{

int Num1 = 1;

int Num2 = 1;

for (int Count = 1; Count < Num; Count++)

{

int Num3 = Num1 + Num2;

Num1 = Num2;

Num2 = Num3;

}

return (Num1);

}

48CSCE 2014 - Programming Foundations II

Question: How much work does 

this iterative algorithm require?



FIBONACCI

int Fibonacci3(const int Num)

{

// Calculation using Binet’s formula

double golden = (1 + sqrt(5)) / 2;

double Binet = (pow(golden, Num) –

pow(-golden, -Num)) / sqrt(5);

return Binet;

}

49CSCE 2014 - Programming Foundations II

Question: How much work does 

this closed form algorithm require?



FIBONACCI

▪ Conclusions:

▪ The Fibonacci function can be described recursively

▪ Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

▪ Fibonacci(1) = 1

▪ Fibonacci(2) = 1

▪ Recursive solution take O(2N) steps

▪ Simple iterative solution takes O(N) steps

▪ Closed form solution takes O(1) step
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BINARY SEARCH

▪ Assume we are given a sorted array of integers

▪ Binary search can be used to quickly search this array

▪ Look at middle element of sorted array

▪ If equal to desired value, you found it

▪ If less than desired value, search right half of array

▪ If greater than desired value, search left half of array

▪ Repeat until data is found (or no data left to search)

52

2 3 5 5 6 7 8 9
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BINARY SEARCH

▪ Search for value 7 in sorted array below

▪ Look at middle location (0+7)/2 = 3, which contains 5

▪ 5 < 7, so search to right

▪ This cuts size of array we are searching in half

53

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9
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BINARY SEARCH

▪ Search for value 7 in unsearched array below

▪ Look at middle location (4+7)/2 = 5, which contains 7

▪ We found the desired value in only 2 searching steps!

54

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9
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BINARY SEARCH

▪ Search for value 2 in sorted array below

▪ Look at middle location (0+7)/2 = 3, which contains 5

▪ 5 > 2, so search to left

▪ This cuts size of array we are searching in half

55

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9
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BINARY SEARCH

▪ Search for value 2 in unsearched array below

▪ Look at middle location (0+2)/2 = 1, which contains 3

▪ 3 > 2, so search to left

▪ Now there is only one location to search!

56

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9
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BINARY SEARCH

▪ Search for value 2 in unsearched array below

▪ Look at middle location (0+0)/2 = 0, which contains 2

▪ We found the desired value in only 3 searching steps!

57

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9
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BINARY SEARCH

▪ This divide and conquer approach is very fast since the 

array we are searching is cut in half at each step

▪ Consider an array with 1024 sorted values

▪ Searching we go from 1024 → 512 → 256 → 128 → 64 →

32 → 16 → 8 → 4 → 2 → 1

▪ Only 10 steps needed to search array of 1024 elements

▪ In general, binary search takes log2N steps to search a 

sorted array of N elements

▪ About 20 steps to search array of 1,000,000 elements

▪ About 30 steps to search array of 1,000,000,000 elements

58CSCE 2014 - Programming Foundations II



BINARY SEARCH

▪ To implement binary search, we need to keep track of the 

portion of the array we are searching

▪ Min = smallest array index of unsearched portion

▪ Max = largest array index of unsearched portion

▪ Mid = (Min + Max) / 2 is middle position

▪ We need to initialize Min=0 and Max=N-1

▪ We need to update these values as we search

▪ This binary search algorithm can be implemented using 

iteration or recursion
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BINARY SEARCH

// Iterative binary search

int Search(int Desired, int Data[], int Min, int Max)

{

// Search array using divide and conquer approach

int Mid = (Min + Max) / 2;

while ((Min <= Max) && (Data[Mid] != Desired))

{

// Change min to search right half

if (Data[Mid] < Desired)

Min = Mid+1;

…  

60

This loop will end 

when data is found, 

or no locations are 

left to search

We change lower array index 

here to be 1 to right of midpoint
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BINARY SEARCH

…

// Change max to search left half

else if (Data[Mid] > Desired)

Max = Mid-1;

// Update mid location

Mid = (Min + Max) / 2;

}

…

61

We change upper array index 

here to be 1 to left of midpoint

CSCE 2014 - Programming Foundations II



BINARY SEARCH

…

// Return results of search

if ((Min <= Max) && Data[Mid] == Desired))

return(Mid);

else

return(-1);

}

62

This returns the array 

index of desired data 

value or -1 if not found
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BINARY SEARCH

▪ Tracing iterative binary search for value 2

63

2 3 5 5 6 7 8 9
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Min Max Mid Data[Mid] Search

0 7 3 5  Left



BINARY SEARCH

▪ Tracing iterative binary search for value 2

64

2 3 5 5 6 7 8 9
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Min Max Mid Data[Mid] Search

0 7 3 5  Left

0 2 1 3  Left



BINARY SEARCH

▪ Tracing iterative binary search for value 2

65

2 3 5 5 6 7 8 9
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Min Max Mid Data[Mid] Search

0 7 3 5  Left

0 2 1 3  Left

0 0 0 2  Found



BINARY SEARCH

// Recursive binary search

int Search( int Desired, int Data[], int Min, int Max )

{ 

// Terminating conditions

int Mid = (Min + Max ) / 2;

if (Max < Min)

return(-1);

else if (Data[Mid] == Desired)

return(Mid);

…

66

This returns the array 

index of desired data 

value or -1 if not found
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BINARY SEARCH

…

// Recursive call to search right half

else if (Data[Mid] < Desired)

return( Search( Desired, Data, Mid+1, Max ) );

// Recursive call to search left half

else if (Data[Mid] > Desired)

return( Search( Desired, Data, Min, Mid-1 ) );

} 

67

Notice how we 

search a smaller 

part of the array 

with each recursive 

function call 
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BINARY SEARCH

▪ Box method trace of recursive binary search for value 2

68

2 3 5 5 6 7 8 9
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main search(0,7)

mid=3

• We calculate mid = 3 and see data[3] = 5 is greater than 2



BINARY SEARCH

▪ Box method trace of recursive binary search for value 2

69

2 3 5 5 6 7 8 9
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main search(0,7) search(0,2)

mid=3 mid=1

• We calculate mid = 3 and see data[3] = 5 is greater than 2

• Make recursive call to search(0,2)

• We calculate mid = 1 and see data[1] = 3 is greater than 2



BINARY SEARCH

▪ Box method trace of recursive binary search for value 2

70

2 3 5 5 6 7 8 9
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main search(0,7) search(0,2) search(0,0)

000

mid=3 mid=1 mid=0

• We calculate mid = 3 and see data[3] = 5 is greater than 2

• Make recursive call to search(0,2)

• We calculate mid = 1 and see data[1] = 3 is greater than 2

• Make recursive call to search(0,0)

• We calculate mid = 0 and see data[0] = 2 is equal to 2 so we return 0 



BINARY SEARCH

▪ Conclusions:

▪ Binary search can be described recursively

▪ search(data,min,max,value) = -1 when min>max

▪ search(data,min,max,value) = mid when data[mid] = value

▪ search(data,min,max,value) = search(data,mid+1,max,value) 

when data[mid] < value

▪ search(data,min,max,value) = search(data,min,mid-1,value) 

when data[mid] > value

▪ Recursive solution takes O(logN) steps

▪ Iterative solution also takes O(logN) steps
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LINKED LISTS

▪ A linked list is sometimes called a recursive data type 

because a linked list can be defined in terms of itself

▪ A linked list is either

▪ Empty (NULL head pointer)

▪ One node connected to a smaller linked list
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head

first node a smaller linked list



LINKED LISTS

▪ Recursive list operations work as follows:

▪ Start at the head of the list

▪ If the head pointer is NULL, then stop

▪ Otherwise perform desired operation

▪ Recursively process the rest of the list 

▪ When we implement these list operations, we will need to 

pass the list pointer as a parameter to the recursive calls

▪ Value parameter: Print, Search

▪ Reference parameter: Insert, Delete
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LINKED LISTS

void Print(Node * head)

{

// Check terminating condition

if (head == NULL) return;

// Print first node

cout << head->Value << endl;

// Print rest of list

Print(head->Next);

}

75

Notice that we do not 

have a loop in this 

recursive function
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LINKED LISTS

▪ What happens when we call Print(head) in main program?
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main print(head)

head NULL

Head points to first node in the linked list so 17 is printed

17 42 72.5



LINKED LISTS

▪ What happens when we call Print(head) in main program?

CSCE 2014 - Programming Foundations II 77

main print(head) print(head)

head NULL

17 42 72.5

Head points to second node in the linked list so 42 is printed



LINKED LISTS

▪ What happens when we call Print(head) in main program?

CSCE 2014 - Programming Foundations II 78

main print(head) print(head) print(head)

head NULL

17 42 72.5

Head points to third node in the linked list so 72.5 is printed



LINKED LISTS

▪ What happens when we call Print(head) in main program?
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main print(head) print(head) print(head)

head

print(head)

NULL

NULL

17 42 72.5

Head points to NULL so the function returns



LINKED LISTS

void Print(Node * head)

{

// Check terminating condition

if (head == NULL) return;

// Print rest of list

Print(head->Next);

// Print first node

cout << head->Value << endl;

}

80

What happens if we move 

the recursive call before 

the print operation?
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LINKED LISTS

bool Search(Node * head, string value)

{

// Check terminating condition

if (head == NULL) return false;

// Check if node is found

if (head->Value == value) return true;

// Handle recursive case

Search(head->Next, value);

}

81CSCE 2014 - Programming Foundations II

This function returns T/F if the 

value is found in list or not

We only make recursive 

call if T/F not returned



LINKED LISTS

void SortedInsert(Node * & head, string value)

{

// Check terminating condition

if ((head == NULL) || (head->Value > value))  {

Node *temp = new Node();

temp->Value = value;

temp->Next = head;

head = temp;

}
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This will insert the new 

node before the head 

pointer to keep the linked 

list data in sorted order

Head pointer is reference 

parameter because we will 

change the linked list



LINKED LISTS

…

// Handle recursive case

else

SortedInsert(head->Next, value);

}
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Otherwise, go to the 

next node in linked list 

and try to insert data



LINKED LISTS

void Delete(Node * & head, string value)

{

// Check terminating condition

if (head == NULL) return;

// Delete node if found

if (head->Value == value)  {

Node *temp = head;

head = head->Next;

delete temp;

}
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This will delete the head 

node if its value matches 

the function parameter

Head pointer is reference 

parameter because we will 

change the linked list



LINKED LISTS

…

// Handle recursive case

else

Delete(head->Next, value);

}
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Otherwise, recursively 

delete the value from the 

rest of the linked list



LINKED LISTS

• The “head” pointer is a private variable in our list class so we 

should not make the recursive linked list methods public

• Create public linked list methods without head parameters

• Create private “helper methods” with head parameters

bool List::SortedInsert(string value)

{

return SortedInsert(Head, value);

}

bool List::SortedInsert(LNode* &head, string value)

{

…

}
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Private recursive 

methods are called 

from public methods 



LINKED LISTS

▪ Conclusions:

▪ Recursive linked list operations are easy to implement 

▪ They are often smaller than iterative operations

▪ No loops, no previous pointers

▪ Recursion is the same speed as iteration

▪ Recursive list operations take O(N) steps

▪ Iterative list operations take O(N) steps
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TOWERS OF HANOI

▪ The goal of the Tower of Hanoi puzzle is to move all disks 

from one tower to another tower using the following rules:

▪ Start with 3 towers and N disks on one tower as shown below

▪ You can move one disk at a time from one tower to another

▪ You can only put a smaller disk on top of a larger disk

▪ Finished when all N disks are on another tower in correct order
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TOWERS OF HANOI

▪ Consider example with 3 towers A,B,C and 3 disks 1,2,3
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1

2 2 1

3 3 1 3 2 1 3 2

A B C A B C A B C A B C

1

2 2 1

3 1 3 1 2 3 2 3

A B C A B C A B C A B C



TOWERS OF HANOI

▪ Consider example with 3 towers A,B,C and 3 disks 1,2,3
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1

2 2 1

3 3 1 3 2 1 3 2

A B C A B C A B C A B C

1

2 2 1

3 1 3 1 2 3 2 3

A B C A B C A B C A B C

We can solve this puzzle as follows:

• move disks 1 and 2 from tower A to tower B (3 steps)



TOWERS OF HANOI

▪ Consider example with 3 towers A,B,C and 3 disks 1,2,3
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1

2 2 1

3 3 1 3 2 1 3 2

A B C A B C A B C A B C

1

2 2 1

3 1 3 1 2 3 2 3

A B C A B C A B C A B C

We can solve this puzzle as follows:

• move disks 1 and 2 from tower A to tower B (3 steps)

• move disk 3 from A to tower C (one step)



TOWERS OF HANOI

▪ Consider example with 3 towers A,B,C and 3 disks 1,2,3
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1

2 2 1

3 3 1 3 2 1 3 2

A B C A B C A B C A B C

1

2 2 1

3 1 3 1 2 3 2 3

A B C A B C A B C A B C

We can solve this puzzle as follows:

• move disks 1 and 2 from tower A to tower B (3 steps)

• move disk 3 from A to tower C (one step)

• move disks 1 and 2 from tower B onto tower C (3 steps)



TOWERS OF HANOI

▪ Recursive solution to the puzzle:

▪ Move N-1 disks from A to B

▪ Move 1 disk from A to C

▪ Move N-1 disks from B to C

CSCE 2014 - Programming Foundations II 94

A CB

A CB A CB

A CB



TOWERS OF HANOI

void tower(int count, char src, char dest, char extra)

{

// Handle recursive case

if (count > 0)

{

tower(count - 1, src, extra, dest);

cout << "move disk from " << src << " to " << dest << endl;

tower(count - 1, extra, dest, src);

}

95CSCE 2014 - Programming Foundations II

We use src, dest and extra for 

the names of the towers when 

printing the instructions

These two recursive calls will 

find the correct sequence of 

moves to solve the puzzle



TOWERS OF HANOI

▪ Program output for tower(3, 'A', 'B', 'C'):

move disk from A to B

move disk from A to C

move disk from B to C

move disk from A to B

move disk from C to A

move disk from C to B

move disk from A to B
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Move 2 disks to correct tower

Move 2 disks out of the way

Move 1 disk to correct tower



TOWERS OF HANOI

▪ Box method trace of 

tower(3, ‘A’, ‘B’, ‘C’)

▪ Call tower(2, ‘A’, ‘C’, ‘B’)
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T(3,A,B,C)

T(2,A,C,B)

T(1,A,B,C)

T(1,A,C,B)

T(1,B,C,A)



TOWERS OF HANOI

▪ Box method trace of 

tower(3, ’A’, ‘B’, ‘C’)

▪ Call tower(2, ‘A’, ‘C’, ‘B’)

▪ Call tower(1, ‘A’, ‘B’, ‘C’)
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T(3,A,B,C)

T(2,A,C,B)

T(1,A,B,C)

T(1,A,B,C)

T(1,A,C,B)

T(1,B,C,A)



TOWERS OF HANOI

▪ Box method trace of 

tower(3, ’A’, ‘B’, ‘C’)

▪ Call tower(2, ‘A’, ‘C’, ‘B’)

▪ Call tower(1, ‘A’, ‘B’, ‘C’)

▪ Call tower(2, ‘C’, ‘B’, ‘A’)

CSCE 2014 - Programming Foundations II 99

T(3,A,B,C)

T(2,A,C,B)

T(1,A,B,C)

T(2,C,B,A)

T(1,A,B,C)

T(1,A,C,B)

T(1,B,C,A)

T(1,C,A,B)

T(1,C,B,A)

T(1,A,B,C)



TOWERS OF HANOI

▪ How many moves are needed to solve the puzzle?

▪ moves(1) = 1

▪ moves(2) = 2 * moves(1) + 1 = 3

▪ moves(3) = 2 * moves(2) + 1 = 7

▪ moves(4) = 2 * moves(3) + 1 = 15

▪ …

▪ moves(N) = 2 * moves(N-1) + 1 = 2N-1

▪ Solving the towers of Hanoi puzzle recursively is an 
exponential algorithm O(2N)

▪ Very complicated iterative solutions also exist for solving 
this puzzle that are also O(2N) 
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GREATEST COMMON DIVISOR

▪ The greatest common divisor (GDC) of two integers is the 

largest positive integer that is a factor of both integers

▪ The GCD of integers a and b is equal to d if d is the largest 

integer where a=d*e and b=d*f for some integers e and f.

▪ Example:  

▪ The factors of 42 are 1,2,3,6,7,14,21,42

▪ The factors of 24 are 1,2,3,4,6,8,12,24

▪ The common factors are 1,2,3,6

▪ 6 is the largest common factor

▪ Hence gcd(42,24) = 6
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GREATEST COMMON DIVISOR

▪ Euclid’s algorithm for calculating the GCD of two integers 

a and b was published in his “Elements” text in 300BC 

▪ His GCD algorithm makes use of repeated subtraction to 

reduce either a or b until they converge to the GCD

▪ Algorithm:

Repeat until a equals b

If a > b then set a=a-b

If b > a then set b=b-a

When equal the GCD is a
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GREATEST COMMON DIVISOR

▪ Example: gcd(42,24)

a b

42 24 - a larger, subtract b

18 24 - b larger, subtract a

18 6 - a larger, subtract b

12 6 - a larger, subtract b

6 6 - equal, gcd(42,24) = 6

▪ We know that a or b will be smaller in each iteration, so 

this loop is guaranteed to stop at some point
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GREATEST COMMON DIVISOR

// Euclid’s original algorithm

int gcd1(int a, int b)

{

while (a != b)

{

if (b > a) 

b = b - a;

else if (a > b) 

a = a - b;

}

return a;

}
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GREATEST COMMON DIVISOR

// Improved GCD algorithm

int gcd2(int a, int b)

{

while (b != 0)

{

int t = b;

b = a % b;

a = t;

}

return a;

}
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By using modulo here we avoid 

numerous subtraction steps

This loop continues until b 

divides evenly into a



GREATEST COMMON DIVISOR

// Recursive GCD algorithm

int gcd3(int a, int b)

{

if (b == 0) 

return a;

else return 

gcd3(b, a % b);

}
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This recursive call always 

has smaller a,b values than 

the original function call

This terminating condition is like 

the previous while loop condition



GREATEST COMMON DIVISOR

▪ Consider box method trace of gcd(42,24)

▪ What happens if we call gcd(24,42)?

▪ What about gcd(42,21)?

▪ What about gcd(42,41)?
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main gcd(42,24) gcd(24,18) gcd(18,6)

666

gcd(6,0)

6



GREATEST COMMON DIVISOR

▪ Conclusions:

▪ Euclid’s GCD algorithm is over 2000 years old and has 
been extensively used and studied by many famous 
mathematicians

▪ In 1884 Gabriel Lamé was able to prove that the GCD 
algorithm runs in no more than 5N steps where N is the 
number of decimal digits in the the number b.  Hence this 
algorithm is O(N)

▪ This was the beginning of computational complexity theory 
(which we study in more detail in CSCE 4323 – Formal 
Languages and Computability)
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N-QUEENS

▪ The goal of the 8-queens puzzle is to place 8 queens on an 8x8 

chess board such that no two queens can threaten each other 
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Notice that each row, column and 

diagonal has only one queen on it



N-QUEENS

▪ This 8-queens puzzle was proposed by Max Bessel in 1848 

and the first solution was published by Franz Nauck in 1850

▪ There are over 4 billion arrangements of 8 queens on a 

chess board but only 92 unique solutions

▪ If we consider solutions with only one queen per row, there 

are 88 = 16,777,216 combinations

▪ If we only consider row or column permutations, there are   

8! = 40,320 possible combinations of 8 queens

▪ Many famous mathematicians worked on this puzzle and the 

generalization to N queens on an NxN board

▪ In 1972 Edsger Dijkstra proposed an O(N!) recursive depth 

first backtracking algorithm to solve the N-queens puzzle
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N-QUEENS

▪ Algorithm:

▪ Assume that columns 1 to k-1 are correctly solved

▪ Pick next available “safe” row location on column k

▪ Recursively solve next column with a queen in this row

▪ If successful return success

▪ If not successful, backtrack and remove queen from 

current row and try next available “safe” row location 

▪ If no “safe” row location can be found, return failure

By limiting our search to “safe” locations, this algorithm 

requires far fewer than 8! recursive function calls
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N-QUEENS

▪ Example:
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Q * * * * * * *

* *

* *

* *

* *

* *

* *

* *

Try row 1 in column 1

6 open rows in column 2

Q * * * * * * *

* * *

* Q * * * * * *

* * * *

* * * *

* * * *

* * * *

* * * *

Try row 3 in column 2

4 open rows in column 3



N-QUEENS

▪ Example:
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Q * * * * * * *

* * * *

* Q * * * * * *

* * * *

* * Q * * * * *

* * * * * *

* * * * * *

* * * * * *

Try row 5 in column 3

3 open rows in column 4

Q * * * * * * *

* * * Q * * * *

* Q * * * * * *

* * * * *

* * Q * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

Try row 2 in column 4

2 open rows in column 5



N-QUEENS

▪ Example:
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Q * * * * * * *

* * * Q * * * *

* Q * * * * * *

* * * * X *

* * Q * * * * *

* * * * * * * *

* * * * * * *

* * * * Q * * *

Try row 8 in column 5

Column 6 full so backtrack

Q * * * * * * *

* * * Q * * * *

* Q * * * * * *

* * * * Q * * *

* * Q * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

Try row 4 in column 5

Column 6 full so backtrack



N-QUEENS

▪ Example:
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Q * * * * * * *

* * * X *

* Q * * * * * *

* * * * *

* * Q * * * * *

* * * * * *

* * * Q * * * *

* * * * * * * *

Remove queen from row 2

Try row 7 in column 4

Q * * * * * * *

* * * X Q * * *

* Q * * * * * *

* * * * * *

* * Q * * * * *

* * * * * *

* * * Q * * * *

* * * * * * * *

Try row 2 in column 5

Continue with remaining columns



N-QUEENS

▪ Example:
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Q

Q

Q

Q

Q

Q

Q

Q

1st solution found after checking    

113 board configurations

Q

Q

Q

Q

Q

Q

Q

Q

92nd solution found after checking 

1951 board configurations

Notice anything interesting here?



N-QUEENS

▪ Chess board symmetry:

▪ We can rotate a chess board by 0, 90, 180, or 270 degrees 

to get 4 different orientations of pieces

▪ We can reflect a board on the x-axis, the y-axis, the y = x 

diagonal, or the y = -x diagonal to get 4 more orientations

▪ For the 8-queens problem there are 12 fundamental 

solutions to the puzzle

▪ We can rotate or reflect one of solutions to obtain all 92 

unique solutions to the 8-queens problem

▪ One of the fundamental solutions is rotationally symmetric 

so there are fewer than 12x8 unique solutions
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N-QUEENS

bool queen(char board[SIZE][SIZE], int col, bool stop)

{

// Check terminating condition

if (col >= SIZE)

{

print_board(board);

cout << "Solution: " << ++SOLUTION << endl;

return stop;

}

12

0

We use this flag to stop 

recursion after one solution 

or all solutions are found
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We print the solution when 

we have successfully placed 

queens in all SIZE columns



N-QUEENS

// Handle recursive case

else

{

// Try all possible rows

for (int row = 0; row < SIZE; row++)

{

// Check if location is safe

if (safe(board, row, col))

{

board[row][col] = 'Q';

print_board(board);

cout << "Step: " << ++STEP << endl;

121

We print the board after 

each step to illustrate the 

recursion and backtracking 
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We check this board 

location to see if it is safe 

from other queens



N-QUEENS

// Check next column

if (queen(board, col + 1, stop))

return true;

// Remove queen 

else

board[row][col] = '.';

}

}

// Return false if no solution found

return false;

}

}
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This is where we backtrack and 

remove the previous queen 

before trying the next location  

The recursive step 

solves the next column in 

the chess board



N-QUEENS

▪ Conclusion:

▪ The number of unique solutions 

increases rapidly with the size of 

the chess board and is only known 

up to n=27

▪ In 2021 Michael Simkin at MIT 

proved that for large n the number 

of solutions is approximately      

S(n) = (0.143n)n

▪ This is a small fraction of the N! 

possible arrangements of queens
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N Solutions

8 92

9 352

10 724

11 2,680

12 14,200

13 73,712

14 365,596

15 2,279,184

16 14,772,512

17 95,815,104

18 666,090,624

19 4,968,057,848

20 39,029,188,884
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SUMMARY

▪ Recursion is a very powerful problem solving tool

▪ To use recursion, we must solve a problem in terms of a 

smaller problem of the same type

▪ Think like a manager and delegate work to someone else

▪ Need to specify the recursive case (smaller problem) and 

the terminating condition (when to stop)

▪ All recursive algorithms can be implemented iteratively 

but the recursive solution is often simpler and easier to 

understand (Towers of Hanoi)
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SUMMARY

▪ Recursive algorithms have very different speeds:
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Speed Algorithm

O(logN) Power 

O(logN) Binary Search 

O(N) Factorial

O(N) Linked Lists

O(N) Greatest Common Divisor

O(2N) Fibonacci

O(2N) Towers of Hanoi

O(N!) N-Queens
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