
RECURSION

OVERVIEW

OVERVIEW

▪ What is recursion?

CSCE 2014 - Programming Foundations II 2

Nested Russian

Matryoshka dolls

Defining a problem

in terms of itself

OVERVIEW

▪ Recursive artwork: picture appears inside picture

CSCE 2014 - Programming Foundations II 3

OVERVIEW

▪ Recursive fractals: self similar patterns

CSCE 2014 - Programming Foundations II 4

OVERVIEW

▪ Recursive jokes: refer to themselves

CSCE 2014 - Programming Foundations II 5

OVERVIEW

▪ In computer science, recursion is a method of solving a
computational problem where the solution depends on
solutions to smaller instances of the same problem – Knuth

▪ Recursion is very old:

▪ Factorial – India 300BC

▪ Greatest common divisor – Greece 300BC

▪ Fibonacci – India 200BC

▪ Recursion is very powerful:

▪ Binary Search

▪ Towers of Hanoi

▪ N-Queens

CSCE 2014 - Programming Foundations II 6

OVERVIEW

▪ In this section we will discuss a variety of classic recursive

algorithms for solving computer science problems

▪ Explain the recursive algorithms

▪ Discuss their implementation

▪ Use box method to trace execution

▪ We will calculate and compare the speeds of algorithms

▪ Some are logarithmic – O(logN)

▪ Some are linear – O(N)

▪ Some are exponential – O(2N)

CSCE 2014 - Programming Foundations II 7

RECURSION

FACTORIAL

FACTORIAL

▪ Intuitive definition of N factorial

▪ The product of all integers from 1 to N

▪ N ! = N * (N-1) * (N-2) * … 3 * 2 * 1

▪ Recursive definition of N factorial

▪ N ! = N * (N-1) !

▪ 1 ! = 1

▪ 0 ! = 1

▪ We can turn this into code very easily

CSCE 2014 - Programming Foundations II 9

Two terminating conditions

Recurrence relationship

FACTORIAL

int factorial(int num)

{

// Handle terminating condition

if (num <= 1)

return 1;

// Handle recursive case

else

return (num * factorial(num – 1));

}

CSCE 2014 - Programming Foundations II 10

Calling factorial function with

smaller parameter value

FACTORIAL

int factorial(int num)

{

// Handle terminating condition

int result = 1;

// Handle recursive case

if (num > 1)

result = num * factorial(num – 1);

return result;

}

CSCE 2014 - Programming Foundations II 11

Calling factorial function with

smaller parameter value

FACTORIAL

▪ We can use the box method to trace the execution of the

factorial function

▪ Goal is to draw a diagram to visualize execution

▪ Draw a box representing each function call

▪ Show parameters at top of box

▪ Use arrows to show each recursive call

▪ Use arrows to show return values

CSCE 2014 - Programming Foundations II 12

FACTORIAL

▪ What happens when we call fact(3) in main program?

CSCE 2014 - Programming Foundations II 13

main fact(3)

We leave main program and

execute fact(3)

FACTORIAL

▪ What happens when we call fact(3) in main program?

CSCE 2014 - Programming Foundations II 14

main fact(3) fact(2)

We execute function with

num=3 and call fact(2)

FACTORIAL

▪ What happens when we call fact(3) in main program?

CSCE 2014 - Programming Foundations II 15

main fact(3) fact(2) fact(1)

We execute function with

num=2 and call fact(1)

FACTORIAL

▪ What happens when we call fact(3) in main program?

CSCE 2014 - Programming Foundations II 16

main fact(3) fact(2) fact(1)

1

We reach terminating

condition and return 1

FACTORIAL

▪ What happens when we call fact(3) in main program?

CSCE 2014 - Programming Foundations II 17

main fact(3) fact(2) fact(1)

12

We calculate and

return 2*1=2

FACTORIAL

▪ What happens when we call fact(3) in main program?

CSCE 2014 - Programming Foundations II 18

main fact(3) fact(2) fact(1)

126

We calculate and

return 3*2=6

FACTORIAL

▪ What happens when we call fact(3) in main program?

CSCE 2014 - Programming Foundations II 19

main fact(3) fact(2) fact(1)

126

Notice that the arrows make a

continuous closed loop and end

up back at the main function

FACTORIAL

▪ How calls to factorial are needed to get answer?

▪ calls(1) = 1

▪ calls(2) = 1 + calls(1) = 2

▪ calls(3) = 1 + calls(2) = 3

▪ …

▪ calls(N) = 1 + calls(N-1) = N

▪ This recursive function is linear because it takes O(N)

calls to calculate the correct answer

CSCE 2014 - Programming Foundations II 20

FACTORIAL

int factorial(int num)

{

// Iterative solution

int result = 1;

while (num > 1)

{

result = result * num;

num--;

}

return result;

}

CSCE 2014 - Programming Foundations II 21

We can also calculate

factorial with a loop that

executes N times

This will be slightly faster

because there is no function

call overhead

FACTORIAL

▪ Conclusions:

▪ The factorial function can be described recursively using

▪ N ! = N * (N-1) !

▪ 1 ! = 1

▪ 0 ! = 1

▪ Recursive solution takes O(N) steps

▪ Iterative solution also takes O(N) steps

CSCE 2014 - Programming Foundations II 22

RECURSION

POWER

POWER

▪ Intuitive definition of the power function XP

▪ XP is the product of X times itself P times

▪ Simple to implement when P is an integer

CSCE 2014 - Programming Foundations II 24

float power(float X, int P)

{

 int result = 1;

 while (P >= 1)

 {

 result *= X;

 P--;

 }

 return result;

}

POWER

▪ Is there a recursive solution?

▪ Consider power(2,6) = 2*2*2 * 2*2*2 = 64

▪ Notice that we are calculating 2*2*2 two times above

▪ Hence power(2,6) = power(2,3) * power(2,3)

▪ We can generalize this as follows

▪ When P is even:

▪ power(X,P) = power(X,P/2) * power(X,P/2)

▪ When P is odd:

▪ power(X,P) = power(X,P/2) * power(X,P/2) * X

CSCE 2014 - Programming Foundations II 25

P is an integer, so we

use integer division

when we calculate P/2

POWER

▪ When should we stop the recursion?

▪ We have the following terminating conditions:

▪ power(X,1) = X

▪ power(X,0) = 1

▪ Is this recursive solution faster?

▪ Yes, if we save and reuse our calculations of power(X,P/2)

CSCE 2014 - Programming Foundations II 26

POWER

float power(float X, int P)

{

// Handle terminating conditions

if (P == 0) return 1;

if (P == 1) return X;

// Handle recursive cases

float temp = power(X,P/2);

if (P % 2 == 0)

return temp * temp;

if (P % 2 == 1)

return temp * temp * X;

}

CSCE 2014 - Programming Foundations II 27

Calculate and save

power result for P/2

Reuse this result to handle

even and odd power cases

POWER

▪ Consider box method trace of power(2,8)

CSCE 2014 - Programming Foundations II 28

main p(2,8)

Main calls

power(2,8)

POWER

▪ Consider box method trace of power(2,8)

CSCE 2014 - Programming Foundations II 29

main p(2,8) p(2,4)

power(2,8) calls

power(2,4)

POWER

▪ Consider box method trace of power(2,8)

CSCE 2014 - Programming Foundations II 30

main p(2,8) p(2,4) p(2,2)

power(2,4) calls

power(2,2)

POWER

▪ Consider box method trace of power(2,8)

CSCE 2014 - Programming Foundations II 31

main p(2,8) p(2,4) p(2,2) p(2,1)

power(2,2) calls

power(2,1)

POWER

▪ Consider box method trace of power(2,8)

CSCE 2014 - Programming Foundations II 32

main p(2,8) p(2,4) p(2,2) p(2,1)

2

We reach P=1 terminating

condition and return X=2

POWER

▪ Consider box method trace of power(2,8)

CSCE 2014 - Programming Foundations II 33

main p(2,8) p(2,4) p(2,2)

4

p(2,1)

2

We calculate and

return 2*2=4

POWER

▪ Consider box method trace of power(2,8)

CSCE 2014 - Programming Foundations II 34

main p(2,8) p(2,4) p(2,2)

416

p(2,1)

2

We calculate and

return 4*4=16

POWER

▪ Consider box method trace of power(2,8)

CSCE 2014 - Programming Foundations II 35

main p(2,8) p(2,4) p(2,2)

416256

p(2,1)

2

We calculate and

return 16*16=256

POWER

▪ Consider box method trace of power(2,8)

CSCE 2014 - Programming Foundations II 36

main p(2,8) p(2,4) p(2,2)

416256

p(2,1)

2

• Notice that we only performed 3 multiplies instead of 8 multiplies

• In general, we only need O(log2P) multiplies to calculate XP

• Unfortunately, this technique does not work for float powers

POWER

▪ Conclusions:

▪ The integer power function can be described recursively

▪ power(X,P) = power(X,P/2) * power(X,P/2) for even P

▪ power(X,P) = power(X,P/2) * power(X,P/2) * X for odd P

▪ power(X,1) = X

▪ power(X,0) = 1

▪ Recursive solution is logarithmic and takes O(logN) steps

▪ Naive iterative solution is linear and takes O(N) steps

CSCE 2014 - Programming Foundations II 37

RECURSION

FIBONACCI

FIBONACCI

▪ Fibonacci was a 12th century Italian mathematician who

popularized the Arabic numeral system in Europe and is

known for the Fibonacci sequence 1,1,2,3,5,8,13,21,34,55…

▪ Notice that each number in the sequence is equal to the

sum of the two previous numbers

▪ Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

▪ The terminating conditions for this recursion are:

▪ Fibonacci(1) = 1

▪ Fibonacci(2) = 1

39CSCE 2014 - Programming Foundations II

FIBONACCI

▪ This recursive function calls itself two times each time it is
executed so the number of recursive calls grows rapidly

int Fibonacci(const int Num)

{

cout << "calling Fibonacci " << Num << endl;

if (Num <= 2)

return(1);

else

return(Fibonacci(Num-1) + Fibonacci(Num-2));

}

40CSCE 2014 - Programming Foundations II

FIBONACCI

▪ Consider box method trace of Fib(3)

▪ First, we call Fib(2)

▪ Then, we return to Fib(3)

▪ Then, we call Fib(1)

41

main Fib(3)

Fib(2)

Fib(1)
1

1

2

CSCE 2014 - Programming Foundations II

FIBONACCI

▪ Program output for Fib(3)

calling Fibonacci 3

calling Fibonacci 2

calling Fibonacci 1

42

There are 2 Recursive

calls from Fibonacci(3)

CSCE 2014 - Programming Foundations II

FIBONACCI

▪ Consider box method trace of Fib(4)

▪ First, we call Fib(3) as above

▪ Then, we return to Fib(4)

▪ Then, we call Fib(2)

43

main Fib(4)

Fib(3)

Fib(2)

Fib(2)

Fib(1)1

12

1

3

CSCE 2014 - Programming Foundations II

FIBONACCI

▪ Program output for Fib(4)

calling Fibonacci 4

calling Fibonacci 3

calling Fibonacci 2

calling Fibonacci 1

calling Fibonacci 2

44

First, we calculate

Fibonacci(3)

Then, we calculate

Fibonacci(2)

CSCE 2014 - Programming Foundations II

FIBONACCI

▪ Consider box method trace of Fib(5)

▪ First, we call Fib(4) as above

▪ Then, we return to Fib(5)

▪ Then, we call Fib(3) as above

45

main Fib(5)

Fib(4)

Fib(3)
3

2

5

Same as

above

Fib(4)

Fib(3)

Fib(2)

Fib(2)

Fib(1)1

12

1

CSCE 2014 - Programming Foundations II

FIBONACCI

▪ Program output for Fib(5)

calling Fibonacci 5

calling Fibonacci 4

calling Fibonacci 3

calling Fibonacci 2

calling Fibonacci 1

calling Fibonacci 2

calling Fibonacci 3

calling Fibonacci 2

calling Fibonacci 1

46

First, we calculate

Fibonacci(4)

Then, we calculate

Fibonacci(3)

CSCE 2014 - Programming Foundations II

FIBONACCI

▪ How can we calculate the number of recursive function

calls needed to calculate the Nth Fibonacci number?

▪ Recursive definition:

▪ calls(N) = calls(N-1) + calls(N-2) + 1

▪ calls(1) = 1

▪ calls(2) = 1

▪ The number of calls is 1,1,3,5,9,15,25,41,67,109…

▪ This is an example of exponential growth O(2N)

▪ As N increases calls(N) → 2 * Fibonacci(N)

47CSCE 2014 - Programming Foundations II

FIBONACCI

int Fibonacci2(const int Num)

{

int Num1 = 1;

int Num2 = 1;

for (int Count = 1; Count < Num; Count++)

{

int Num3 = Num1 + Num2;

Num1 = Num2;

Num2 = Num3;

}

return (Num1);

}

48CSCE 2014 - Programming Foundations II

Question: How much work does

this iterative algorithm require?

FIBONACCI

int Fibonacci3(const int Num)

{

// Calculation using Binet’s formula

double golden = (1 + sqrt(5)) / 2;

double Binet = (pow(golden, Num) –

pow(-golden, -Num)) / sqrt(5);

return Binet;

}

49CSCE 2014 - Programming Foundations II

Question: How much work does

this closed form algorithm require?

FIBONACCI

▪ Conclusions:

▪ The Fibonacci function can be described recursively

▪ Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

▪ Fibonacci(1) = 1

▪ Fibonacci(2) = 1

▪ Recursive solution take O(2N) steps

▪ Simple iterative solution takes O(N) steps

▪ Closed form solution takes O(1) step

CSCE 2014 - Programming Foundations II 50

RECURSION

BINARY SEARCH

BINARY SEARCH

▪ Assume we are given a sorted array of integers

▪ Binary search can be used to quickly search this array

▪ Look at middle element of sorted array

▪ If equal to desired value, you found it

▪ If less than desired value, search right half of array

▪ If greater than desired value, search left half of array

▪ Repeat until data is found (or no data left to search)

52

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

BINARY SEARCH

▪ Search for value 7 in sorted array below

▪ Look at middle location (0+7)/2 = 3, which contains 5

▪ 5 < 7, so search to right

▪ This cuts size of array we are searching in half

53

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

BINARY SEARCH

▪ Search for value 7 in unsearched array below

▪ Look at middle location (4+7)/2 = 5, which contains 7

▪ We found the desired value in only 2 searching steps!

54

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

BINARY SEARCH

▪ Search for value 2 in sorted array below

▪ Look at middle location (0+7)/2 = 3, which contains 5

▪ 5 > 2, so search to left

▪ This cuts size of array we are searching in half

55

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

BINARY SEARCH

▪ Search for value 2 in unsearched array below

▪ Look at middle location (0+2)/2 = 1, which contains 3

▪ 3 > 2, so search to left

▪ Now there is only one location to search!

56

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

BINARY SEARCH

▪ Search for value 2 in unsearched array below

▪ Look at middle location (0+0)/2 = 0, which contains 2

▪ We found the desired value in only 3 searching steps!

57

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

BINARY SEARCH

▪ This divide and conquer approach is very fast since the

array we are searching is cut in half at each step

▪ Consider an array with 1024 sorted values

▪ Searching we go from 1024 → 512 → 256 → 128 → 64 →

32 → 16 → 8 → 4 → 2 → 1

▪ Only 10 steps needed to search array of 1024 elements

▪ In general, binary search takes log2N steps to search a

sorted array of N elements

▪ About 20 steps to search array of 1,000,000 elements

▪ About 30 steps to search array of 1,000,000,000 elements

58CSCE 2014 - Programming Foundations II

BINARY SEARCH

▪ To implement binary search, we need to keep track of the

portion of the array we are searching

▪ Min = smallest array index of unsearched portion

▪ Max = largest array index of unsearched portion

▪ Mid = (Min + Max) / 2 is middle position

▪ We need to initialize Min=0 and Max=N-1

▪ We need to update these values as we search

▪ This binary search algorithm can be implemented using

iteration or recursion

59CSCE 2014 - Programming Foundations II

BINARY SEARCH

// Iterative binary search

int Search(int Desired, int Data[], int Min, int Max)

{

// Search array using divide and conquer approach

int Mid = (Min + Max) / 2;

while ((Min <= Max) && (Data[Mid] != Desired))

{

// Change min to search right half

if (Data[Mid] < Desired)

Min = Mid+1;

…

60

This loop will end

when data is found,

or no locations are

left to search

We change lower array index

here to be 1 to right of midpoint
CSCE 2014 - Programming Foundations II

BINARY SEARCH

…

// Change max to search left half

else if (Data[Mid] > Desired)

Max = Mid-1;

// Update mid location

Mid = (Min + Max) / 2;

}

…

61

We change upper array index

here to be 1 to left of midpoint

CSCE 2014 - Programming Foundations II

BINARY SEARCH

…

// Return results of search

if ((Min <= Max) && Data[Mid] == Desired))

return(Mid);

else

return(-1);

}

62

This returns the array

index of desired data

value or -1 if not found

CSCE 2014 - Programming Foundations II

BINARY SEARCH

▪ Tracing iterative binary search for value 2

63

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

Min Max Mid Data[Mid] Search

0 7 3 5 Left

BINARY SEARCH

▪ Tracing iterative binary search for value 2

64

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

Min Max Mid Data[Mid] Search

0 7 3 5 Left

0 2 1 3 Left

BINARY SEARCH

▪ Tracing iterative binary search for value 2

65

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

Min Max Mid Data[Mid] Search

0 7 3 5 Left

0 2 1 3 Left

0 0 0 2 Found

BINARY SEARCH

// Recursive binary search

int Search(int Desired, int Data[], int Min, int Max)

{

// Terminating conditions

int Mid = (Min + Max) / 2;

if (Max < Min)

return(-1);

else if (Data[Mid] == Desired)

return(Mid);

…

66

This returns the array

index of desired data

value or -1 if not found

CSCE 2014 - Programming Foundations II

BINARY SEARCH

…

// Recursive call to search right half

else if (Data[Mid] < Desired)

return(Search(Desired, Data, Mid+1, Max));

// Recursive call to search left half

else if (Data[Mid] > Desired)

return(Search(Desired, Data, Min, Mid-1));

}

67

Notice how we

search a smaller

part of the array

with each recursive

function call

CSCE 2014 - Programming Foundations II

BINARY SEARCH

▪ Box method trace of recursive binary search for value 2

68

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

main search(0,7)

mid=3

• We calculate mid = 3 and see data[3] = 5 is greater than 2

BINARY SEARCH

▪ Box method trace of recursive binary search for value 2

69

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

main search(0,7) search(0,2)

mid=3 mid=1

• We calculate mid = 3 and see data[3] = 5 is greater than 2

• Make recursive call to search(0,2)

• We calculate mid = 1 and see data[1] = 3 is greater than 2

BINARY SEARCH

▪ Box method trace of recursive binary search for value 2

70

2 3 5 5 6 7 8 9

CSCE 2014 - Programming Foundations II

main search(0,7) search(0,2) search(0,0)

000

mid=3 mid=1 mid=0

• We calculate mid = 3 and see data[3] = 5 is greater than 2

• Make recursive call to search(0,2)

• We calculate mid = 1 and see data[1] = 3 is greater than 2

• Make recursive call to search(0,0)

• We calculate mid = 0 and see data[0] = 2 is equal to 2 so we return 0

BINARY SEARCH

▪ Conclusions:

▪ Binary search can be described recursively

▪ search(data,min,max,value) = -1 when min>max

▪ search(data,min,max,value) = mid when data[mid] = value

▪ search(data,min,max,value) = search(data,mid+1,max,value)

when data[mid] < value

▪ search(data,min,max,value) = search(data,min,mid-1,value)

when data[mid] > value

▪ Recursive solution takes O(logN) steps

▪ Iterative solution also takes O(logN) steps

CSCE 2014 - Programming Foundations II 71

RECURSION

LINKED LISTS

LINKED LISTS

▪ A linked list is sometimes called a recursive data type

because a linked list can be defined in terms of itself

▪ A linked list is either

▪ Empty (NULL head pointer)

▪ One node connected to a smaller linked list

CSCE 2014 - Programming Foundations II 73

head

first node a smaller linked list

LINKED LISTS

▪ Recursive list operations work as follows:

▪ Start at the head of the list

▪ If the head pointer is NULL, then stop

▪ Otherwise perform desired operation

▪ Recursively process the rest of the list

▪ When we implement these list operations, we will need to

pass the list pointer as a parameter to the recursive calls

▪ Value parameter: Print, Search

▪ Reference parameter: Insert, Delete

CSCE 2014 - Programming Foundations II 74

LINKED LISTS

void Print(Node * head)

{

// Check terminating condition

if (head == NULL) return;

// Print first node

cout << head->Value << endl;

// Print rest of list

Print(head->Next);

}

75

Notice that we do not

have a loop in this

recursive function

CSCE 2014 - Programming Foundations II

LINKED LISTS

▪ What happens when we call Print(head) in main program?

CSCE 2014 - Programming Foundations II 76

main print(head)

head NULL

Head points to first node in the linked list so 17 is printed

17 42 72.5

LINKED LISTS

▪ What happens when we call Print(head) in main program?

CSCE 2014 - Programming Foundations II 77

main print(head) print(head)

head NULL

17 42 72.5

Head points to second node in the linked list so 42 is printed

LINKED LISTS

▪ What happens when we call Print(head) in main program?

CSCE 2014 - Programming Foundations II 78

main print(head) print(head) print(head)

head NULL

17 42 72.5

Head points to third node in the linked list so 72.5 is printed

LINKED LISTS

▪ What happens when we call Print(head) in main program?

CSCE 2014 - Programming Foundations II 79

main print(head) print(head) print(head)

head

print(head)

NULL

NULL

17 42 72.5

Head points to NULL so the function returns

LINKED LISTS

void Print(Node * head)

{

// Check terminating condition

if (head == NULL) return;

// Print rest of list

Print(head->Next);

// Print first node

cout << head->Value << endl;

}

80

What happens if we move

the recursive call before

the print operation?

CSCE 2014 - Programming Foundations II

LINKED LISTS

bool Search(Node * head, string value)

{

// Check terminating condition

if (head == NULL) return false;

// Check if node is found

if (head->Value == value) return true;

// Handle recursive case

Search(head->Next, value);

}

81CSCE 2014 - Programming Foundations II

This function returns T/F if the

value is found in list or not

We only make recursive

call if T/F not returned

LINKED LISTS

void SortedInsert(Node * & head, string value)

{

// Check terminating condition

if ((head == NULL) || (head->Value > value)) {

Node *temp = new Node();

temp->Value = value;

temp->Next = head;

head = temp;

}

82CSCE 2014 - Programming Foundations II

This will insert the new

node before the head

pointer to keep the linked

list data in sorted order

Head pointer is reference

parameter because we will

change the linked list

LINKED LISTS

…

// Handle recursive case

else

SortedInsert(head->Next, value);

}

83CSCE 2014 - Programming Foundations II

Otherwise, go to the

next node in linked list

and try to insert data

LINKED LISTS

void Delete(Node * & head, string value)

{

// Check terminating condition

if (head == NULL) return;

// Delete node if found

if (head->Value == value) {

Node *temp = head;

head = head->Next;

delete temp;

}

84CSCE 2014 - Programming Foundations II

This will delete the head

node if its value matches

the function parameter

Head pointer is reference

parameter because we will

change the linked list

LINKED LISTS

…

// Handle recursive case

else

Delete(head->Next, value);

}

85CSCE 2014 - Programming Foundations II

Otherwise, recursively

delete the value from the

rest of the linked list

LINKED LISTS

• The “head” pointer is a private variable in our list class so we

should not make the recursive linked list methods public

• Create public linked list methods without head parameters

• Create private “helper methods” with head parameters

bool List::SortedInsert(string value)

{

return SortedInsert(Head, value);

}

bool List::SortedInsert(LNode* &head, string value)

{

…

}

86CSCE 2014 - Programming Foundations II

Private recursive

methods are called

from public methods

LINKED LISTS

▪ Conclusions:

▪ Recursive linked list operations are easy to implement

▪ They are often smaller than iterative operations

▪ No loops, no previous pointers

▪ Recursion is the same speed as iteration

▪ Recursive list operations take O(N) steps

▪ Iterative list operations take O(N) steps

CSCE 2014 - Programming Foundations II 87

RECURSION

TOWERS OF HANOI

TOWERS OF HANOI

▪ The goal of the Tower of Hanoi puzzle is to move all disks

from one tower to another tower using the following rules:

▪ Start with 3 towers and N disks on one tower as shown below

▪ You can move one disk at a time from one tower to another

▪ You can only put a smaller disk on top of a larger disk

▪ Finished when all N disks are on another tower in correct order

CSCE 2014 - Programming Foundations II 89

TOWERS OF HANOI

▪ Consider example with 3 towers A,B,C and 3 disks 1,2,3

CSCE 2014 - Programming Foundations II 90

1

2 2 1

3 3 1 3 2 1 3 2

A B C A B C A B C A B C

1

2 2 1

3 1 3 1 2 3 2 3

A B C A B C A B C A B C

TOWERS OF HANOI

▪ Consider example with 3 towers A,B,C and 3 disks 1,2,3

CSCE 2014 - Programming Foundations II 91

1

2 2 1

3 3 1 3 2 1 3 2

A B C A B C A B C A B C

1

2 2 1

3 1 3 1 2 3 2 3

A B C A B C A B C A B C

We can solve this puzzle as follows:

• move disks 1 and 2 from tower A to tower B (3 steps)

TOWERS OF HANOI

▪ Consider example with 3 towers A,B,C and 3 disks 1,2,3

CSCE 2014 - Programming Foundations II 92

1

2 2 1

3 3 1 3 2 1 3 2

A B C A B C A B C A B C

1

2 2 1

3 1 3 1 2 3 2 3

A B C A B C A B C A B C

We can solve this puzzle as follows:

• move disks 1 and 2 from tower A to tower B (3 steps)

• move disk 3 from A to tower C (one step)

TOWERS OF HANOI

▪ Consider example with 3 towers A,B,C and 3 disks 1,2,3

CSCE 2014 - Programming Foundations II 93

1

2 2 1

3 3 1 3 2 1 3 2

A B C A B C A B C A B C

1

2 2 1

3 1 3 1 2 3 2 3

A B C A B C A B C A B C

We can solve this puzzle as follows:

• move disks 1 and 2 from tower A to tower B (3 steps)

• move disk 3 from A to tower C (one step)

• move disks 1 and 2 from tower B onto tower C (3 steps)

TOWERS OF HANOI

▪ Recursive solution to the puzzle:

▪ Move N-1 disks from A to B

▪ Move 1 disk from A to C

▪ Move N-1 disks from B to C

CSCE 2014 - Programming Foundations II 94

A CB

A CB A CB

A CB

TOWERS OF HANOI

void tower(int count, char src, char dest, char extra)

{

// Handle recursive case

if (count > 0)

{

tower(count - 1, src, extra, dest);

cout << "move disk from " << src << " to " << dest << endl;

tower(count - 1, extra, dest, src);

}

95CSCE 2014 - Programming Foundations II

We use src, dest and extra for

the names of the towers when

printing the instructions

These two recursive calls will

find the correct sequence of

moves to solve the puzzle

TOWERS OF HANOI

▪ Program output for tower(3, 'A', 'B', 'C'):

move disk from A to B

move disk from A to C

move disk from B to C

move disk from A to B

move disk from C to A

move disk from C to B

move disk from A to B

CSCE 2014 - Programming Foundations II 96

Move 2 disks to correct tower

Move 2 disks out of the way

Move 1 disk to correct tower

TOWERS OF HANOI

▪ Box method trace of

tower(3, ‘A’, ‘B’, ‘C’)

▪ Call tower(2, ‘A’, ‘C’, ‘B’)

CSCE 2014 - Programming Foundations II 97

T(3,A,B,C)

T(2,A,C,B)

T(1,A,B,C)

T(1,A,C,B)

T(1,B,C,A)

TOWERS OF HANOI

▪ Box method trace of

tower(3, ’A’, ‘B’, ‘C’)

▪ Call tower(2, ‘A’, ‘C’, ‘B’)

▪ Call tower(1, ‘A’, ‘B’, ‘C’)

CSCE 2014 - Programming Foundations II 98

T(3,A,B,C)

T(2,A,C,B)

T(1,A,B,C)

T(1,A,B,C)

T(1,A,C,B)

T(1,B,C,A)

TOWERS OF HANOI

▪ Box method trace of

tower(3, ’A’, ‘B’, ‘C’)

▪ Call tower(2, ‘A’, ‘C’, ‘B’)

▪ Call tower(1, ‘A’, ‘B’, ‘C’)

▪ Call tower(2, ‘C’, ‘B’, ‘A’)

CSCE 2014 - Programming Foundations II 99

T(3,A,B,C)

T(2,A,C,B)

T(1,A,B,C)

T(2,C,B,A)

T(1,A,B,C)

T(1,A,C,B)

T(1,B,C,A)

T(1,C,A,B)

T(1,C,B,A)

T(1,A,B,C)

TOWERS OF HANOI

▪ How many moves are needed to solve the puzzle?

▪ moves(1) = 1

▪ moves(2) = 2 * moves(1) + 1 = 3

▪ moves(3) = 2 * moves(2) + 1 = 7

▪ moves(4) = 2 * moves(3) + 1 = 15

▪ …

▪ moves(N) = 2 * moves(N-1) + 1 = 2N-1

▪ Solving the towers of Hanoi puzzle recursively is an
exponential algorithm O(2N)

▪ Very complicated iterative solutions also exist for solving
this puzzle that are also O(2N)

CSCE 2014 - Programming Foundations II 100

RECURSION

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR

▪ The greatest common divisor (GDC) of two integers is the

largest positive integer that is a factor of both integers

▪ The GCD of integers a and b is equal to d if d is the largest

integer where a=d*e and b=d*f for some integers e and f.

▪ Example:

▪ The factors of 42 are 1,2,3,6,7,14,21,42

▪ The factors of 24 are 1,2,3,4,6,8,12,24

▪ The common factors are 1,2,3,6

▪ 6 is the largest common factor

▪ Hence gcd(42,24) = 6

CSCE 2014 - Programming Foundations II 102

GREATEST COMMON DIVISOR

▪ Euclid’s algorithm for calculating the GCD of two integers

a and b was published in his “Elements” text in 300BC

▪ His GCD algorithm makes use of repeated subtraction to

reduce either a or b until they converge to the GCD

▪ Algorithm:

Repeat until a equals b

If a > b then set a=a-b

If b > a then set b=b-a

When equal the GCD is a

CSCE 2014 - Programming Foundations II 103

GREATEST COMMON DIVISOR

▪ Example: gcd(42,24)

a b

42 24 - a larger, subtract b

18 24 - b larger, subtract a

18 6 - a larger, subtract b

12 6 - a larger, subtract b

6 6 - equal, gcd(42,24) = 6

▪ We know that a or b will be smaller in each iteration, so

this loop is guaranteed to stop at some point

CSCE 2014 - Programming Foundations II 104

GREATEST COMMON DIVISOR

// Euclid’s original algorithm

int gcd1(int a, int b)

{

while (a != b)

{

if (b > a)

b = b - a;

else if (a > b)

a = a - b;

}

return a;

}

CSCE 2014 - Programming Foundations II 105

GREATEST COMMON DIVISOR

// Improved GCD algorithm

int gcd2(int a, int b)

{

while (b != 0)

{

int t = b;

b = a % b;

a = t;

}

return a;

}

CSCE 2014 - Programming Foundations II 106

By using modulo here we avoid

numerous subtraction steps

This loop continues until b

divides evenly into a

GREATEST COMMON DIVISOR

// Recursive GCD algorithm

int gcd3(int a, int b)

{

if (b == 0)

return a;

else return

gcd3(b, a % b);

}

CSCE 2014 - Programming Foundations II 107

This recursive call always

has smaller a,b values than

the original function call

This terminating condition is like

the previous while loop condition

GREATEST COMMON DIVISOR

▪ Consider box method trace of gcd(42,24)

▪ What happens if we call gcd(24,42)?

▪ What about gcd(42,21)?

▪ What about gcd(42,41)?

CSCE 2014 - Programming Foundations II 108

main gcd(42,24) gcd(24,18) gcd(18,6)

666

gcd(6,0)

6

GREATEST COMMON DIVISOR

▪ Conclusions:

▪ Euclid’s GCD algorithm is over 2000 years old and has
been extensively used and studied by many famous
mathematicians

▪ In 1884 Gabriel Lamé was able to prove that the GCD
algorithm runs in no more than 5N steps where N is the
number of decimal digits in the the number b. Hence this
algorithm is O(N)

▪ This was the beginning of computational complexity theory
(which we study in more detail in CSCE 4323 – Formal
Languages and Computability)

CSCE 2014 - Programming Foundations II 109

RECURSION

N-QUEENS

N-QUEENS

▪ The goal of the 8-queens puzzle is to place 8 queens on an 8x8

chess board such that no two queens can threaten each other

CSCE 2014 - Programming Foundations II 111

Notice that each row, column and

diagonal has only one queen on it

N-QUEENS

▪ This 8-queens puzzle was proposed by Max Bessel in 1848

and the first solution was published by Franz Nauck in 1850

▪ There are over 4 billion arrangements of 8 queens on a

chess board but only 92 unique solutions

▪ If we consider solutions with only one queen per row, there

are 88 = 16,777,216 combinations

▪ If we only consider row or column permutations, there are

8! = 40,320 possible combinations of 8 queens

▪ Many famous mathematicians worked on this puzzle and the

generalization to N queens on an NxN board

▪ In 1972 Edsger Dijkstra proposed an O(N!) recursive depth

first backtracking algorithm to solve the N-queens puzzle

CSCE 2014 - Programming Foundations II 112

N-QUEENS

▪ Algorithm:

▪ Assume that columns 1 to k-1 are correctly solved

▪ Pick next available “safe” row location on column k

▪ Recursively solve next column with a queen in this row

▪ If successful return success

▪ If not successful, backtrack and remove queen from

current row and try next available “safe” row location

▪ If no “safe” row location can be found, return failure

By limiting our search to “safe” locations, this algorithm

requires far fewer than 8! recursive function calls

CSCE 2014 - Programming Foundations II 113

N-QUEENS

▪ Example:

CSCE 2014 - Programming Foundations II 114

Q * * * * * * *

* *

* *

* *

* *

* *

* *

* *

Try row 1 in column 1

6 open rows in column 2

Q * * * * * * *

* * *

* Q * * * * * *

* * * *

* * * *

* * * *

* * * *

* * * *

Try row 3 in column 2

4 open rows in column 3

N-QUEENS

▪ Example:

CSCE 2014 - Programming Foundations II 115

Q * * * * * * *

* * * *

* Q * * * * * *

* * * *

* * Q * * * * *

* * * * * *

* * * * * *

* * * * * *

Try row 5 in column 3

3 open rows in column 4

Q * * * * * * *

* * * Q * * * *

* Q * * * * * *

* * * * *

* * Q * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

Try row 2 in column 4

2 open rows in column 5

N-QUEENS

▪ Example:

CSCE 2014 - Programming Foundations II 116

Q * * * * * * *

* * * Q * * * *

* Q * * * * * *

* * * * X *

* * Q * * * * *

* * * * * * * *

* * * * * * *

* * * * Q * * *

Try row 8 in column 5

Column 6 full so backtrack

Q * * * * * * *

* * * Q * * * *

* Q * * * * * *

* * * * Q * * *

* * Q * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

Try row 4 in column 5

Column 6 full so backtrack

N-QUEENS

▪ Example:

CSCE 2014 - Programming Foundations II 117

Q * * * * * * *

* * * X *

* Q * * * * * *

* * * * *

* * Q * * * * *

* * * * * *

* * * Q * * * *

* * * * * * * *

Remove queen from row 2

Try row 7 in column 4

Q * * * * * * *

* * * X Q * * *

* Q * * * * * *

* * * * * *

* * Q * * * * *

* * * * * *

* * * Q * * * *

* * * * * * * *

Try row 2 in column 5

Continue with remaining columns

N-QUEENS

▪ Example:

CSCE 2014 - Programming Foundations II 118

Q

Q

Q

Q

Q

Q

Q

Q

1st solution found after checking

113 board configurations

Q

Q

Q

Q

Q

Q

Q

Q

92nd solution found after checking

1951 board configurations

Notice anything interesting here?

N-QUEENS

▪ Chess board symmetry:

▪ We can rotate a chess board by 0, 90, 180, or 270 degrees

to get 4 different orientations of pieces

▪ We can reflect a board on the x-axis, the y-axis, the y = x

diagonal, or the y = -x diagonal to get 4 more orientations

▪ For the 8-queens problem there are 12 fundamental

solutions to the puzzle

▪ We can rotate or reflect one of solutions to obtain all 92

unique solutions to the 8-queens problem

▪ One of the fundamental solutions is rotationally symmetric

so there are fewer than 12x8 unique solutions

CSCE 2014 - Programming Foundations II 119

N-QUEENS

bool queen(char board[SIZE][SIZE], int col, bool stop)

{

// Check terminating condition

if (col >= SIZE)

{

print_board(board);

cout << "Solution: " << ++SOLUTION << endl;

return stop;

}

12

0

We use this flag to stop

recursion after one solution

or all solutions are found

CSCE 2014 - Programming Foundations II

We print the solution when

we have successfully placed

queens in all SIZE columns

N-QUEENS

// Handle recursive case

else

{

// Try all possible rows

for (int row = 0; row < SIZE; row++)

{

// Check if location is safe

if (safe(board, row, col))

{

board[row][col] = 'Q';

print_board(board);

cout << "Step: " << ++STEP << endl;

121

We print the board after

each step to illustrate the

recursion and backtracking

CSCE 2014 - Programming Foundations II

We check this board

location to see if it is safe

from other queens

N-QUEENS

// Check next column

if (queen(board, col + 1, stop))

return true;

// Remove queen

else

board[row][col] = '.';

}

}

// Return false if no solution found

return false;

}

}

122CSCE 2014 - Programming Foundations II

This is where we backtrack and

remove the previous queen

before trying the next location

The recursive step

solves the next column in

the chess board

N-QUEENS

▪ Conclusion:

▪ The number of unique solutions

increases rapidly with the size of

the chess board and is only known

up to n=27

▪ In 2021 Michael Simkin at MIT

proved that for large n the number

of solutions is approximately

S(n) = (0.143n)n

▪ This is a small fraction of the N!

possible arrangements of queens

CSCE 2014 - Programming Foundations II 123

N Solutions

8 92

9 352

10 724

11 2,680

12 14,200

13 73,712

14 365,596

15 2,279,184

16 14,772,512

17 95,815,104

18 666,090,624

19 4,968,057,848

20 39,029,188,884

RECURSION

SUMMARY

SUMMARY

▪ Recursion is a very powerful problem solving tool

▪ To use recursion, we must solve a problem in terms of a

smaller problem of the same type

▪ Think like a manager and delegate work to someone else

▪ Need to specify the recursive case (smaller problem) and

the terminating condition (when to stop)

▪ All recursive algorithms can be implemented iteratively

but the recursive solution is often simpler and easier to

understand (Towers of Hanoi)

CSCE 2014 - Programming Foundations II 125

SUMMARY

▪ Recursive algorithms have very different speeds:

CSCE 2014 - Programming Foundations II 126

Speed Algorithm

O(logN) Power

O(logN) Binary Search

O(N) Factorial

O(N) Linked Lists

O(N) Greatest Common Divisor

O(2N) Fibonacci

O(2N) Towers of Hanoi

O(N!) N-Queens

	Slide 1: Recursion
	Slide 2: OVERVIEW
	Slide 3: overview
	Slide 4: OVERVIEW
	Slide 5: overview
	Slide 6: OVERVIEW
	Slide 7: OVERVIEW
	Slide 8: Recursion
	Slide 9: Factorial
	Slide 10: Factorial
	Slide 11: Factorial
	Slide 12: Factorial
	Slide 13: Factorial
	Slide 14: Factorial
	Slide 15: Factorial
	Slide 16: Factorial
	Slide 17: Factorial
	Slide 18: Factorial
	Slide 19: Factorial
	Slide 20: Factorial
	Slide 21: Factorial
	Slide 22: Factorial
	Slide 23: recursion
	Slide 24: power
	Slide 25: power
	Slide 26: power
	Slide 27: power
	Slide 28: power
	Slide 29: power
	Slide 30: power
	Slide 31: power
	Slide 32: power
	Slide 33: power
	Slide 34: power
	Slide 35: power
	Slide 36: power
	Slide 37: power
	Slide 38: recursion
	Slide 39: Fibonacci
	Slide 40: Fibonacci
	Slide 41: Fibonacci
	Slide 42: Fibonacci
	Slide 43: Fibonacci
	Slide 44: Fibonacci
	Slide 45: Fibonacci
	Slide 46: Fibonacci
	Slide 47: Fibonacci
	Slide 48: Fibonacci
	Slide 49: Fibonacci
	Slide 50: fibonacci
	Slide 51: recursion
	Slide 52: BINARY SEARCH
	Slide 53: BINARY SEARCH
	Slide 54: BINARY SEARCH
	Slide 55: BINARY SEARCH
	Slide 56: BINARY SEARCH
	Slide 57: BINARY SEARCH
	Slide 58: Binary search
	Slide 59: Binary search
	Slide 60: Binary search
	Slide 61: Binary search
	Slide 62: Binary search
	Slide 63: BINARY SEARCH
	Slide 64: BINARY SEARCH
	Slide 65: BINARY SEARCH
	Slide 66: Binary search
	Slide 67: Binary search
	Slide 68: BINARY SEARCH
	Slide 69: BINARY SEARCH
	Slide 70: BINARY SEARCH
	Slide 71: Binary search
	Slide 72: recursion
	Slide 73: Linked lists
	Slide 74: Linked lists
	Slide 75: Linked lists
	Slide 76: Linked lists
	Slide 77: Linked lists
	Slide 78: Linked lists
	Slide 79: Linked lists
	Slide 80: Linked lists
	Slide 81: Linked lists
	Slide 82: Linked lists
	Slide 83: Linked lists
	Slide 84: Linked lists
	Slide 85: Linked lists
	Slide 86: Linked lists
	Slide 87: Linked lists
	Slide 88: recursion
	Slide 89: Towers of hanoi
	Slide 90: Towers of hanoi
	Slide 91: Towers of hanoi
	Slide 92: Towers of hanoi
	Slide 93: Towers of hanoi
	Slide 94: Towers of hanoi
	Slide 95: Towers of hanoi
	Slide 96: Towers of hanoi
	Slide 97: Towers of hanoi
	Slide 98: Towers of hanoi
	Slide 99: Towers of hanoi
	Slide 100: Towers of hanoi
	Slide 101: recursion
	Slide 102: Greatest common divisor
	Slide 103: Greatest common divisor
	Slide 104: Greatest common divisor
	Slide 105: Greatest common divisor
	Slide 106: Greatest common divisor
	Slide 107: Greatest common divisor
	Slide 108: Greatest common divisor
	Slide 109: Greatest common divisor
	Slide 110: recursion
	Slide 111: N-queens
	Slide 112: N-queens
	Slide 113: N-Queens
	Slide 114: N-Queens
	Slide 115: N-Queens
	Slide 116: N-Queens
	Slide 117: N-Queens
	Slide 118: N-Queens
	Slide 119: N-Queens
	Slide 120: N-queens
	Slide 121: N-queens
	Slide 122: N-queens
	Slide 123: N-Queens
	Slide 124: recursion
	Slide 125: summary
	Slide 126: summary

